CORona Drug InTEractions database
In-silico drug repurposing and molecular dynamics puzzled out potential SARS-CoV-2 main protease inhibitors
Mahmoud A. A. Ibrahim, Alaa H. M. Abdelrahman, Mohamed-Elamir F. Hegazy
Abstract
Herein, the DrugBank database which contains 10,036 approved and investigational drugs was explored deeply for potential drugs that target SARS-CoV-2 main protease (Mpro). Filtration process of the database was conducted using three levels of accuracy for molecular docking calculations. The top 35 drugs with docking scores > −11.0 kcal/mol were then subjected to 10 ns molecular dynamics (MD) simulations followed by molecular mechanics–generalized Born surface area (MM-GBSA) binding energy calculations. The results showed that DB02388 and Cobicistat (DB09065) exhibited potential binding affinities towards Mpro over 100 ns MD simulations, with binding energy values of −49.67 and −46.60 kcal/mol, respectively. Binding energy and structural analyses demonstrated the higher stability of DB02388 over Cobicistat. The potency of DB02388 and Cobicistat is attributed to their abilities to form several hydrogen bonds with the essential amino acids inside the active site of Mpro. Compared to DB02388 and Cobicistat, Darunavir showed a much lower binding affinity of −34.83 kcal/mol. The present study highlights the potentiality of DB02388 and Cobicistat as anti-COVID-19 drugs for clinical trials.
Source: PubMed
Related molecules
Related interactions
Target | Drug | Type | Result |
---|---|---|---|
3C-like protease | Cyclohexyl-{4-[5-(3,4-Dichlorophenyl)-2-Piperidin-4-Yl-3-Propyl-3h-Imidazol-4-Yl]-Pyrimidin-2-Yl}Amine | ||
3C-like protease | Cobicistat |
Target | Target affiliation | Drug | Type | Result |
---|---|---|---|---|
Target | Target affiliation | Drug | Type | Result |
Name | Synonyms | Genes | Origin |
---|---|---|---|
Name | Synonyms | Genes | Origin |
Name | Synonyms | PubChem | DrugBank | RCSB PDB | ATC |
---|---|---|---|---|---|
Name | Synonyms | PubChem | DrugBank | RCSB PDB | ATC |
Title | Authors | DOI | Source | Article type | Date |
---|---|---|---|---|---|
Title | Authors | DOI | Source | Article type | Date |
Title | Status | Phases | Start Date | Prim. Comp. Date | Comp. Date | First Post. Date |
---|---|---|---|---|---|---|
Title | Status | Phases | Start Date | Prim. Comp. Date | Comp. Date | First Post. Date |
CORDITE (CORona Drug InTEractions database) collects and aggregates data from PubMed, MedRxiv, BioRxiv, ChemRxiv and PMC for SARS-CoV-2. Its main focus is set on drug interactions either addressing viral proteins or human proteins that could be used to treat COVID. It collects and provides up-to-date information on computational predictions, in vitro, as well as in vivo study data.
The information provided is for research only and we cannot guarantee the correctness of the data.
Please contact dominik.heider@uni-muenster.de for further information.
Programmable access
There is an open API for access programmatically to the database. The API will print a JSON output:
- Interactions
https://cordite-api.uni-muenster.de/api.php?action=list&table=interaction
- Targets
https://cordite-api.uni-muenster.de/api.php?action=list&table=target
- Drugs
https://cordite-api.uni-muenster.de/api.php?action=list&table=drug
- Publications
https://cordite-api.uni-muenster.de/api.php?action=list&table=publication
- Clinical trials
https://cordite-api.uni-muenster.de/api.php?action=list&table=clinical_trial