CORona Drug InTEractions database
In-silico drug repurposing study: Amprenavir, enalaprilat, and plerixafor, potential drugs for destabilizing the SARS-CoV-2 S-protein-angiotensin-converting enzyme 2 complex
Ivonne Buitrón-González, Giovanny Aguilera-Durán, Antonio Romo-Mancillas
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that leads to coronavirus disease (COVID-19) has put public health at risk in 2020. The spike protein (SP) in SARS-CoV-2 is primarily responsible for the attachment and entry of the virus into the cell, which binds to the angiotensin-converting enzyme 2 (ACE2). Owing to the lack of an effective therapy, drug repositioning is an opportunity to search for molecules with pharmacological potential for the treatment of COVID-19. In this study, three candidates with the potential to destabilize the SP-ACE2 complex are reported. Through molecular docking, 147 drugs were evaluated and their possible binding sites in the interface region of the SP-ACE2 complex and the SP of SARS-CoV-2 were identified. The five best candidate molecules were selected for molecular dynamics studies to observe changes in interactions between SP-ACE2 and ligands with the SP-ACE2 complex. Using umbrella sampling molecular dynamics simulations, the binding energy of SP with ACE2 (−29.58 kcal/mol) without ligands, and in complex with amprenavir (−20.13 kcal/mol), enalaprilat (–23.84 kcal/mol), and plerixafor (−19.72 kcal/mol) were calculated. These drugs are potential candidates for the treatment of COVID-19 as they destabilize the SP-ACE2 complex; the binding energy of SP is decreased in the presence of these drugs and may prevent the virus from entering the cell. Plerixafor is the drug with the greatest potential to destabilize the SP-ACE2 complex, followed by amprenavir and enalaprilat; thus, these three drugs are proposed for future in vitro and in vivo evaluations.
Source: PMC
Related molecules
Name | Synonyms | Genes |
---|---|---|
Enalaprilat | ||
Angiotensin-converting enzyme 2-Spike glycoprotein interface | ||
Plerixafor | ||
Amprenavir |
Related interactions
Target | Target affiliation | Drug | Type | Result |
---|---|---|---|---|
Target | Target affiliation | Drug | Type | Result |
Name | Synonyms | Genes | Origin |
---|---|---|---|
Name | Synonyms | Genes | Origin |
Name | Synonyms | PubChem | DrugBank | RCSB PDB | ATC |
---|---|---|---|---|---|
Name | Synonyms | PubChem | DrugBank | RCSB PDB | ATC |
Title | Authors | DOI | Source | Article type | Date |
---|---|---|---|---|---|
Title | Authors | DOI | Source | Article type | Date |
Title | Status | Phases | Start Date | Prim. Comp. Date | Comp. Date | First Post. Date |
---|---|---|---|---|---|---|
Title | Status | Phases | Start Date | Prim. Comp. Date | Comp. Date | First Post. Date |
CORDITE (CORona Drug InTEractions database) collects and aggregates data from PubMed, MedRxiv, BioRxiv, ChemRxiv and PMC for SARS-CoV-2. Its main focus is set on drug interactions either addressing viral proteins or human proteins that could be used to treat COVID. It collects and provides up-to-date information on computational predictions, in vitro, as well as in vivo study data.
The information provided is for research only and we cannot guarantee the correctness of the data.
Please contact dominik.heider@uni-muenster.de for further information.
Programmable access
There is an open API for access programmatically to the database. The API will print a JSON output:
- Interactions
https://cordite-api.uni-muenster.de/api.php?action=list&table=interaction
- Targets
https://cordite-api.uni-muenster.de/api.php?action=list&table=target
- Drugs
https://cordite-api.uni-muenster.de/api.php?action=list&table=drug
- Publications
https://cordite-api.uni-muenster.de/api.php?action=list&table=publication
- Clinical trials
https://cordite-api.uni-muenster.de/api.php?action=list&table=clinical_trial