CORona Drug InTEractions database
Investigating the binding affinity, interaction, and structure-activity-relationship of 76 prescription antiviral drugs targeting RdRp and Mpro of SARS-CoV-2
Sinthyia Ahmed, Rumana Mahtarin, Sayeda Samina Ahmed, Shaila Akter, Md. Shamiul Islam, Abdulla Al Mamun, Rajib Islam, Md Nayeem Hossain, Md Ackas Ali , Mossammad U. C. Sultana, MD. Rimon Parves, M. Obayed Ullah, Mohammad A. Halim
Abstract
SARS-CoV-2 virus outbreak poses a major threat to humans worldwide due to its highly contagious nature. In this study, molecular docking, molecular dynamics, and structure-activity relationship are employed to assess the binding affinity and interaction of 76 prescription drugs against RNA dependent RNA polymerase (RdRp) and Main Protease (Mpro) of SARS-CoV-2. The RNA-dependent RNA polymerase is a vital enzyme of coronavirus replication/transcription complex whereas the main protease acts on the proteolysis of replicase polyproteins. Among 76 prescription antiviral drugs, four drugs (Raltegravir, Simeprevir, Cobicistat, and Daclatasvir) that are previously used for human immunodeficiency virus (HIV), hepatitis C virus (HCV), Ebola, and Marburg virus show higher binding energy and strong interaction with active sites of the receptor proteins. To explore the dynamic nature of the interaction, 100 ns molecular dynamics (MD) simulation is performed on the selected protein-drug complexes and apo-protein. Binding free energy of the selected drugs is performed by MM/PBSA. Besides docking and dynamics, partial least square (PLS) regression method is applied for the quantitative structure activity relationship to generate and predict the binding energy for drugs. PLS regression satisfactorily predicts the binding energy of the effective antiviral drugs compared to binding energy achieved from molecular docking with a precision of 85%. This study highly recommends researchers to screen these potential drugs in vitro and in vivo against SARS-CoV-2 for further validation of utility.
Source: PubMed
Related molecules
Related interactions
Target | Target affiliation | Drug | Type | Result |
---|---|---|---|---|
Target | Target affiliation | Drug | Type | Result |
Name | Synonyms | Genes | Origin |
---|---|---|---|
Name | Synonyms | Genes | Origin |
Name | Synonyms | PubChem | DrugBank | RCSB PDB | ATC |
---|---|---|---|---|---|
Name | Synonyms | PubChem | DrugBank | RCSB PDB | ATC |
Title | Authors | DOI | Source | Article type | Date |
---|---|---|---|---|---|
Title | Authors | DOI | Source | Article type | Date |
Title | Status | Phases | Start Date | Prim. Comp. Date | Comp. Date | First Post. Date |
---|---|---|---|---|---|---|
Title | Status | Phases | Start Date | Prim. Comp. Date | Comp. Date | First Post. Date |
CORDITE (CORona Drug InTEractions database) collects and aggregates data from PubMed, MedRxiv, BioRxiv, ChemRxiv and PMC for SARS-CoV-2. Its main focus is set on drug interactions either addressing viral proteins or human proteins that could be used to treat COVID. It collects and provides up-to-date information on computational predictions, in vitro, as well as in vivo study data.
The information provided is for research only and we cannot guarantee the correctness of the data.
Please contact dominik.heider@uni-muenster.de for further information.
Programmable access
There is an open API for access programmatically to the database. The API will print a JSON output:
- Interactions
https://cordite-api.uni-muenster.de/api.php?action=list&table=interaction
- Targets
https://cordite-api.uni-muenster.de/api.php?action=list&table=target
- Drugs
https://cordite-api.uni-muenster.de/api.php?action=list&table=drug
- Publications
https://cordite-api.uni-muenster.de/api.php?action=list&table=publication
- Clinical trials
https://cordite-api.uni-muenster.de/api.php?action=list&table=clinical_trial