The Anti-histamine Azelastine, Identified by Computational Drug Repurposing, Inhibits SARS-CoV-2 Infection in Reconstituted Human Nasal Tissue In Vitro
Robert Konrat, Henrietta Papp, Valéria Szijártó, Tanja Gesell, Gábor Nagy, Mónika Madai, Safia Zeghbib, Anett Kuczmog, Zsófia Lanszki, Zsuzsanna Helyes, Gábor Kemenesi, Ferenc Jakab, Eszter Nagy
Abstract
Background: The COVID-19 pandemic is an enormous threat for healthcare systems and economies worldwide that urgently demands effective preventive and therapeutic strategies. Unlike the development of vaccines and new drugs specifically targeting SARS-CoV-2, repurposing of approved or clinically tested drugs can provide an immediate solution.
Methods: We applied a novel computational approach to search among approved and clinically tested drugs from the DrugBank database. Candidates were selected based on Shannon entropy homology and predefined activity profiles of three small molecules with proven anti-SARS-CoV activity and a published data set. Antiviral activity of a predicted drug, azelastine, was tested in vitro in SARS-CoV-2 infection assays with Vero E6 monkey kidney epithelial cells and reconstituted human nasal tissue. The effect on viral replication was assessed by quantification of viral genomes by droplet digital PCR.
Findings: The computational approach with four independent queries identified major drug families, most often and in overlapping fashion anti-infective, anti-inflammatory, anti-hypertensive, anti-histamine and neuroactive drugs. Azelastine, an histamine 1 receptor-blocker, was predicted in multiple screens, and based on its attractive safety profile and availability in nasal formulation, was selected for experimental testing. Azelastine significantly reduced cytopathic effect and SARS-CoV-2 infection of Vero E6 cells with an EC50 of ∼6 μM both in a preventive and treatment setting. Furthermore, azelastine in a commercially available nasal spray tested at 5-fold dilution was highly potent in inhibiting viral propagation in SARS-CoV-2 infected reconstituted human nasal tissue.
Interpretations: Azelastine, an anti-histamine, available in nasal sprays developed against allergic rhinitis may be considered as a topical prevention or treatment of nasal colonization with SARS-CoV-2. As such, it could be useful in reducing viral spread and prophylaxis of COVID-19. Ultimately, its potential benefit should be proven in clinical studies.
CORDITE (CORona Drug InTEractions database) collects and aggregates data from PubMed, MedRxiv, BioRxiv, ChemRxiv and PMC for SARS-CoV-2. Its main focus is set on drug interactions either addressing viral proteins or human proteins that could be used to treat COVID.
It collects and provides up-to-date information on computational predictions, in vitro, as well as in vivo study data.
The information provided is for research only and we cannot guarantee the correctness of the data.