CORona Drug InTEractions database
Transcriptome-based drug repositioning for coronavirus disease 2019 (COVID-19)
Zhilong Jia, Xinyu Song, Jinlong Shi, Weidong Wang, Kunlun He
Abstract
The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) around the world has led to a pandemic with high morbidity and mortality. However, there are no effective drugs to prevent and treat the disease. Transcriptome-based drug repositioning, identifying new indications for old drugs, is a powerful tool for drug development. Using bronchoalveolar lavage fluid transcriptome data of COVID-19 patients, we found that the endocytosis and lysosome pathways are highly involved in the disease and that the regulation of genes involved in neutrophil degranulation was disrupted, suggesting an intense battle between SARS-CoV-2 and humans. Furthermore, we implemented a coexpression drug repositioning analysis, cogena, and identified two antiviral drugs (saquinavir and ribavirin) and several other candidate drugs (such as dinoprost, dipivefrine, dexamethasone and (-)-isoprenaline). Notably, the two antiviral drugs have also previously been identified using molecular docking methods, and ribavirin is a recommended drug in the diagnosis and treatment protocol for COVID pneumonia (trial version 5–7) published by the National Health Commission of the P.R. of China. Our study demonstrates the value of the cogena-based drug repositioning method for emerging infectious diseases, improves our understanding of SARS-CoV-2-induced disease, and provides potential drugs for the prevention and treatment of COVID-19 pneumonia.
Source: PubMed
Related molecules
Related interactions
Target | Target affiliation | Drug | Type | Result |
---|---|---|---|---|
Target | Target affiliation | Drug | Type | Result |
Name | Synonyms | Genes | Origin |
---|---|---|---|
Name | Synonyms | Genes | Origin |
Name | Synonyms | PubChem | DrugBank | RCSB PDB | ATC |
---|---|---|---|---|---|
Name | Synonyms | PubChem | DrugBank | RCSB PDB | ATC |
Title | Authors | DOI | Source | Article type | Date |
---|---|---|---|---|---|
Title | Authors | DOI | Source | Article type | Date |
Title | Status | Phases | Start Date | Prim. Comp. Date | Comp. Date | First Post. Date |
---|---|---|---|---|---|---|
Title | Status | Phases | Start Date | Prim. Comp. Date | Comp. Date | First Post. Date |
CORDITE (CORona Drug InTEractions database) collects and aggregates data from PubMed, MedRxiv, BioRxiv, ChemRxiv and PMC for SARS-CoV-2. Its main focus is set on drug interactions either addressing viral proteins or human proteins that could be used to treat COVID. It collects and provides up-to-date information on computational predictions, in vitro, as well as in vivo study data.
The information provided is for research only and we cannot guarantee the correctness of the data.
Please contact dominik.heider@uni-muenster.de for further information.
Programmable access
There is an open API for access programmatically to the database. The API will print a JSON output:
- Interactions
https://cordite-api.uni-muenster.de/api.php?action=list&table=interaction
- Targets
https://cordite-api.uni-muenster.de/api.php?action=list&table=target
- Drugs
https://cordite-api.uni-muenster.de/api.php?action=list&table=drug
- Publications
https://cordite-api.uni-muenster.de/api.php?action=list&table=publication
- Clinical trials
https://cordite-api.uni-muenster.de/api.php?action=list&table=clinical_trial