A Novel Protein Drug, Novaferon, as the Potential Antiviral Drug for COVID-19
Fang Zheng, Yanwen Zhou, Zhiguo Zhou, Fei Ye, Baoying Huang, Yaxiong Huang, Jing Ma, Qi Zuo, Xin Tan, Jun Xie, Peihua Niu, Wenlong Wang, Yun Xu, Feng Peng, Ning Zhou, Chunlin Cai, Wei Tang, Xinqiang Xiao, Yi Li, Zhiguang Zhou, Zhiguang Zhou, Yongfang Jiang, Yuanlin Xie, Wenjie Tan, Guozhong Gong
Abstract
Background Novaferon, a novel protein drug approved for the treatment of chronic hepatitis B in China, exhibits potent antiviral activities. We aimed to determine the anti-SARS-CoV-2 effects of Novaferon in vitro, and conducted a randomized, open-label, parallel group study to explore the antiviral effects of Novaferon for COVID-19. Methods In laboratory, the inhibition of Novaferon on viral replication in cells infected with SARS-CoV-2, and on SARS-CoV-2 entry into healthy cells was determined. Antiviral effects of Novaferon were evaluated in COVID-19 patients with treatment of Novaferon, Novaferon plus Lopinavir/Ritonavir, or Lopinavir/Ritonavir. The primary endpoint was the SARS-CoV-2 clearance rates on day 6 of treatment, and the secondary endpoint was the time to the SARS-CoV-2 clearance in COVID-19 patients Results Novaferon inhibited the viral replication in infected cells (EC50=1.02 ng/ml), and protected healthy cells from SARS-CoV-2 infection (EC50=0.1 ng/ml). Results from the 89 enrolled COVID-19 patients showed that both Novaferon and Novaferon plus Lopinavir/Ritonavir groups had significantly higher SARS-CoV-2 clearance rates on day 6 than the Lopinavir/Ritonavir group (50.0% vs.24.1%, p = 0.0400, and 60.0% vs.24.1%, p = 0.0053). Median time to SARS-CoV-2 clearance were 6 days, 6 days, and 9 days for three groups respectively, suggesting a 3-dayreduction of time to SARS-CoV-2 clearance in both Novaferon and Novaferon plus Lopinavir/Ritonavir groups compared with Lopinavir/Ritonavir group. Conclusions Novaferon exhibited anti-SARS-CoV-2 effects in vitro and in COVID-19 patients. These data justified the further evaluation of Novaferon.
CORDITE (CORona Drug InTEractions database) collects and aggregates data from PubMed, MedRxiv, BioRxiv, ChemRxiv and PMC for SARS-CoV-2. Its main focus is set on drug interactions either addressing viral proteins or human proteins that could be used to treat COVID.
It collects and provides up-to-date information on computational predictions, in vitro, as well as in vivo study data.
The information provided is for research only and we cannot guarantee the correctness of the data.