CORona Drug InTEractions database
In silico Drug Repurposing for COVID-19: Targeting SARS-CoV-2 Proteins through Docking and Quantum Mechanical Scoring
Claudio Cavasotto, Juan Di Filippo
Abstract
In December 2019, an infectious disease caused by the coronavirus SARS-CoV-2 appeared in Wuhan, China. This disease (COVID-19) spread rapidly worldwide, and on March 2020 was declared a pandemic by the World Health Organization (WHO). Today, almost 1,5 million people have been infected, with more than 85,000 casualties. Today, no vaccine nor antiviral drug is available. While the development of a vaccine might take at least a year, and for a novel drug, even longer; finding a new use to an old drug (drug repurposing) could be the most effective strategy. We present a docking-based screening using a quantum mechanical scoring of a library built from approved drugs and compounds undergoing clinical trials, against three SARS-CoV-2 target proteins: the spike or S-protein, and two proteases, the main protease and the papain-like protease. The S-protein binds directly to the Angiotensin Converting Enzyme 2 receptor of the human host cell surface, while the two proteases process viral polyproteins. Following the anaylysis of our structure-based compound screening, we propose several structurally diverse compounds (either FDA-approved or in clinical trials) that could display antiviral activity against SARS-CoV-2. Clearly, these compounds should be further evaluated in experimental assays and clinical trials to confirm their actual activity against the disease. We hope that these findings may contribute to the rational drug design against COVID-19.
Source: ChemRxiv
Related molecules
Related interactions
Target | Target affiliation | Drug | Type | Result |
---|---|---|---|---|
Target | Target affiliation | Drug | Type | Result |
Name | Synonyms | Genes | Origin |
---|---|---|---|
Name | Synonyms | Genes | Origin |
Name | Synonyms | PubChem | DrugBank | RCSB PDB | ATC |
---|---|---|---|---|---|
Name | Synonyms | PubChem | DrugBank | RCSB PDB | ATC |
Title | Authors | DOI | Source | Article type | Date |
---|---|---|---|---|---|
Title | Authors | DOI | Source | Article type | Date |
Title | Status | Phases | Start Date | Prim. Comp. Date | Comp. Date | First Post. Date |
---|---|---|---|---|---|---|
Title | Status | Phases | Start Date | Prim. Comp. Date | Comp. Date | First Post. Date |
CORDITE (CORona Drug InTEractions database) collects and aggregates data from PubMed, MedRxiv, BioRxiv, ChemRxiv and PMC for SARS-CoV-2. Its main focus is set on drug interactions either addressing viral proteins or human proteins that could be used to treat COVID. It collects and provides up-to-date information on computational predictions, in vitro, as well as in vivo study data.
The information provided is for research only and we cannot guarantee the correctness of the data.
Please contact dominik.heider@uni-muenster.de for further information.
Programmable access
There is an open API for access programmatically to the database. The API will print a JSON output:
- Interactions
https://cordite-api.uni-muenster.de/api.php?action=list&table=interaction
- Targets
https://cordite-api.uni-muenster.de/api.php?action=list&table=target
- Drugs
https://cordite-api.uni-muenster.de/api.php?action=list&table=drug
- Publications
https://cordite-api.uni-muenster.de/api.php?action=list&table=publication
- Clinical trials
https://cordite-api.uni-muenster.de/api.php?action=list&table=clinical_trial