CORona Drug InTEractions database
AI-aided design of novel targeted covalent inhibitors against SARS-CoV-2
Bowen Tang, Fengming He, Dongpeng Liu, Meijuan Fang, Zhen Wu, Dong Xu
Abstract
The focused drug repurposing of known approved drugs (such as lopinavir/ritonavir) has been reported failed for curing SARS-CoV-2 infected patients. It is urgent to generate new chemical entities against this virus. As a key enzyme in the life-cycle of coronavirus, the 3C-like main protease (3CLpro or Mpro) is the most attractive for antiviral drug design. Based on a recently solved structure (PDB ID: 6LU7), we developed a novel advanced deep Q-learning network with the fragment-based drug design (ADQN-FBDD) for generating potential lead compounds targeting SARS-CoV-2 3CLpro. We obtained a series of derivatives from those lead compounds by our structure-based optimization policy (SBOP). All the 47 lead compounds directly from our AI-model and related derivatives based on SBOP are accessible in our molecular library at https://github.com/tbwxmu/2019-nCov. These compounds can be used as potential candidates for researchers in their development of drugs against SARS-CoV-2.
Source: BioRxiv
Related molecules
Name | Synonyms | Genes |
---|---|---|
N-(4-chlorophenyl)-2-((4-(3-phenylisoxazol-5-yl)pyrimidin-2-yl)thio)acetamide | Compound 46 |
Target | Target affiliation | Drug | Type | Result |
---|---|---|---|---|
Target | Target affiliation | Drug | Type | Result |
Name | Synonyms | Genes | Origin |
---|---|---|---|
Name | Synonyms | Genes | Origin |
Name | Synonyms | PubChem | DrugBank | RCSB PDB | ATC |
---|---|---|---|---|---|
Name | Synonyms | PubChem | DrugBank | RCSB PDB | ATC |
Title | Authors | DOI | Source | Article type | Date |
---|---|---|---|---|---|
Title | Authors | DOI | Source | Article type | Date |
Title | Status | Phases | Start Date | Prim. Comp. Date | Comp. Date | First Post. Date |
---|---|---|---|---|---|---|
Title | Status | Phases | Start Date | Prim. Comp. Date | Comp. Date | First Post. Date |
CORDITE (CORona Drug InTEractions database) collects and aggregates data from PubMed, MedRxiv, BioRxiv, ChemRxiv and PMC for SARS-CoV-2. Its main focus is set on drug interactions either addressing viral proteins or human proteins that could be used to treat COVID. It collects and provides up-to-date information on computational predictions, in vitro, as well as in vivo study data.
The information provided is for research only and we cannot guarantee the correctness of the data.
Please contact dominik.heider@uni-muenster.de for further information.
Programmable access
There is an open API for access programmatically to the database. The API will print a JSON output:
- Interactions
https://cordite-api.uni-muenster.de/api.php?action=list&table=interaction
- Targets
https://cordite-api.uni-muenster.de/api.php?action=list&table=target
- Drugs
https://cordite-api.uni-muenster.de/api.php?action=list&table=drug
- Publications
https://cordite-api.uni-muenster.de/api.php?action=list&table=publication
- Clinical trials
https://cordite-api.uni-muenster.de/api.php?action=list&table=clinical_trial