CORona Drug InTEractions database
Homology Modeling of TMPRSS2 Yields Candidate Drugs That May Inhibit Entry of SARS-CoV-2 into Human Cells
Stefano Rensi, Russ B Altman, Tianyun Liu, Yu-Chen Lo, Greg McInnes, Alex Derry, Allison Keys
Abstract
The most rapid path to discovering treatment options for the novel coronavirus SARS-CoV-2 is to find existing medications that are active against the virus. We have focused on identifying repurposing candidates for the transmembrane serine protease family member II (TMPRSS2), which is critical for entry of coronaviruses into cells. Using known 3D structures of close homologs, we created seven homology models. We also identified a set of serine protease inhibitor drugs, generated several conformations of each, and docked them into our models. We used three known chemical (non-drug) inhibitors and one validated inhibitor of TMPRSS2 in MERS as benchmark compounds and found six compounds with predicted high binding affinity in the range of the known inhibitors. We also showed that a previously published weak inhibitor, Camostat, had a significantly lower binding score than our six compounds. All six compounds are anticoagulants with significant and potentially dangerous clinical effects and side effects. Nonetheless, if these compounds significantly inhibit SARS-CoV-2 infection, they could represent a potentially useful clinical tool.
Source: ChemRxiv
Related molecules
Related interactions
Target | Target affiliation | Drug | Type | Result |
---|---|---|---|---|
Target | Target affiliation | Drug | Type | Result |
Name | Synonyms | Genes | Origin |
---|---|---|---|
Name | Synonyms | Genes | Origin |
Name | Synonyms | PubChem | DrugBank | RCSB PDB | ATC |
---|---|---|---|---|---|
Name | Synonyms | PubChem | DrugBank | RCSB PDB | ATC |
Title | Authors | DOI | Source | Article type | Date |
---|---|---|---|---|---|
Title | Authors | DOI | Source | Article type | Date |
Title | Status | Phases | Start Date | Prim. Comp. Date | Comp. Date | First Post. Date |
---|---|---|---|---|---|---|
Title | Status | Phases | Start Date | Prim. Comp. Date | Comp. Date | First Post. Date |
CORDITE (CORona Drug InTEractions database) collects and aggregates data from PubMed, MedRxiv, BioRxiv, ChemRxiv and PMC for SARS-CoV-2. Its main focus is set on drug interactions either addressing viral proteins or human proteins that could be used to treat COVID. It collects and provides up-to-date information on computational predictions, in vitro, as well as in vivo study data.
The information provided is for research only and we cannot guarantee the correctness of the data.
Please contact dominik.heider@uni-muenster.de for further information.
Programmable access
There is an open API for access programmatically to the database. The API will print a JSON output:
- Interactions
https://cordite-api.uni-muenster.de/api.php?action=list&table=interaction
- Targets
https://cordite-api.uni-muenster.de/api.php?action=list&table=target
- Drugs
https://cordite-api.uni-muenster.de/api.php?action=list&table=drug
- Publications
https://cordite-api.uni-muenster.de/api.php?action=list&table=publication
- Clinical trials
https://cordite-api.uni-muenster.de/api.php?action=list&table=clinical_trial